
django-versatileimagefield
Documentation

Release 0.1.1

Jonathan Ellenberger

April 06, 2015

Contents

1 In A Nutshell 3

2 Table of Contents 5
2.1 Installation . 5
2.2 Model Integration . 7
2.3 Specifying a Primary Point of Interest (PPOI) . 12
2.4 Using Sizers and Filters . 14
2.5 Writing Custom Sizers and Filters . 18
2.6 Django REST Framework Integration . 24
2.7 Improving Performance . 27

3 Release Notes 29
3.1 0.6.1 . 29
3.2 0.6 . 29
3.3 0.5.4 . 29
3.4 0.5.3 . 29
3.5 0.5.2 . 29
3.6 0.5.1 . 29
3.7 0.5 . 30
3.8 0.4 . 30
3.9 0.3.1 . 30
3.10 0.3 . 30
3.11 0.2.1 . 30
3.12 0.2 . 30
3.13 0.1.5 . 30
3.14 0.1.4 . 31
3.15 0.1.3 . 31
3.16 0.1.2 . 31
3.17 0.1.1 . 31
3.18 0.1 . 31

4 Roadmap to v1.0 33

i

ii

django-versatileimagefield Documentation, Release 0.1.1

A drop-in replacement for django’s ImageField that provides a flexible, intuitive and easily-extensible interface for
quickly creating new images from the one assigned to your field.

Contents 1

django-versatileimagefield Documentation, Release 0.1.1

2 Contents

CHAPTER 1

In A Nutshell

• Creates images anywhere you need them: not just in templates.

• Non-destructive: Your original image is never modified.

• Sizer and Filter framework: enables you to quickly add new – or modify existing – ways to create new images:

– Sizers create images with new sizes and/or aspect ratios

– Filters change the appearance of an image

• Sizers can be chained onto Filters: Use case: give me a black-and-white, 400px by 400px square crop of this
image.

• Primary Point of Interest (PPOI) support: provides a way to specify where the ‘primary point of interest’ of
each individual image is – a value which is available to all Sizers and Filters. Use case: sometimes you want the
‘crop centerpoint’ to be somewhere other than the center of an image. Includes a user-friendly formfield/widget
for selecting PPOI in the admin (or anywhere else you use ModelForms).

• Works with any storage: Stores the images it creates within the same storage class as your field . Works great
with external storage (like Amazon S3).

• Fully interchangeable with ImageField: you can easily remove VersatileImageField from your
project’s models whenever you’d like.

• Integrated caching: References to created images are stored in the cache, keeping your application running
quickly and efficiently.

• Django REST Framework support: Serialize multiple image renditions from a single
VersatileImageField.

• Flexible and fast: On-demand image creation can be toggled in your settings file allowing you to turn it off
when you need your application to run as quickly as possible.

3

django-versatileimagefield Documentation, Release 0.1.1

4 Chapter 1. In A Nutshell

CHAPTER 2

Table of Contents

2.1 Installation

Installation is easy with pip:

$ pip install django-versatileimagefield

2.1.1 Python Compatibility

• 2.7.x

• 3.3.x

• 3.4.x

2.1.2 Dependencies

• django>=1.6.x

• Pillow >= 2.4.x

django-versatileimagefield depends on the excellent Pillow fork of PIL. If you already have PIL installed,
it is recommended you uninstall it prior to installing django-versatileimagefield:

$ pip uninstall PIL
$ pip install django-versatileimagefield

Note: django-versatileimagefield will not install django.

2.1.3 Settings

After installation completes, add ’versatileimagefield’ to INSTALLED_APPS:

INSTALLED_APPS = (
All your other apps here
’versatileimagefield’,

)

5

https://pypi.python.org/pypi/pip
http://pillow.readthedocs.org

django-versatileimagefield Documentation, Release 0.1.1

VERSATILEIMAGEFIELD_SETTINGS

A dictionary that allows you to fine-tune how django-versatileimagefield works:

VERSATILEIMAGEFIELD_SETTINGS = {
The amount of time, in seconds, that references to created images
should be stored in the cache. Defaults to ‘2592000‘ (30 days)

’cache_length’: 2592000,
The name of the cache you’d like ‘django-versatileimagefield‘ to use.
Defaults to ’versatileimagefield_cache’. If no cache exists with the name
provided, the ’default’ cache will be used instead.
’cache_name’: ’versatileimagefield_cache’,
The save quality of modified JPEG images. More info here:
http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html#jpeg
Defaults to 70
’jpeg_resize_quality’: 70,
The name of the top-level folder within storage classes to save all
sized images. Defaults to ’__sized__’
’sized_directory_name’: ’__sized__’,
The name of the directory to save all filtered images within.
Defaults to ’__filtered__’:
’filtered_directory_name’: ’__filtered__’,
The name of the directory to save placeholder images within.
Defaults to ’__placeholder__’:
’placeholder_directory_name’: ’__placeholder__’,
Whether or not to create new images on-the-fly. Set this to ‘False‘ for
speedy performance but don’t forget to ’pre-warm’ to ensure they’re
created and available at the appropriate URL.
’create_images_on_demand’: True

}

VERSATILEIMAGEFIELD_USE_PLACEHOLDIT

A boolean that signifies whether optional (blank=True) VersatileImageField fields that do not specify a
placeholder image should return placehold.it URLs.

VERSATILEIMAGEFIELD_RENDITION_KEY_SETS

A dictionary used to specify ‘Rendition Key Sets’ that are used for both serialization or
as a way to ‘warm’ image files so they don’t need to be created on demand (i.e. when
settings.VERSATILEIMAGEFIELD_SETTINGS[’create_images_on_demand’] is set to False)
which will greatly improve the overall performance of your app. Here’s an example:

VERSATILEIMAGEFIELD_RENDITION_KEY_SETS = {
’image_gallery’: [

(’gallery_large’, ’crop__800x450’),
(’gallery_square_small’, ’crop__50x50’)

],
’primary_image_detail’: [

(’hero’, ’crop__600x283’),
(’social’, ’thumbnail__800x800’)

],
’primary_image_list’: [

(’list’, ’crop__400x225’),
],
’headshot’: [

6 Chapter 2. Table of Contents

http://placehold.it/

django-versatileimagefield Documentation, Release 0.1.1

(’headshot_small’, ’crop__150x175’),
]

}

Each key in VERSATILEIMAGEFIELD_RENDITION_KEY_SETS signifies a ‘Rendition Key Set’, a list comprised
of 2-tuples wherein the first position is a serialization-friendly name of an image rendition and the second position is
a ‘Rendition Key’ (which dictates how the original image should be modified).

Writing Rendition Keys

Rendition Keys are intuitive and easy to write, simply swap out double-underscores for the dot-notated paths you’d
use in the shell or in templates. Examples:

Intended
image

As ‘Rendition
Key’

In the shell In templates

400px by
400px Crop

’crop__400x400’ instance.image_field.crop[’400x400’].url{{
instance.image_field.crop.400x400
}}

100px by
100px
Thumbnail

’thumbnail__100x100’instance.image_field.thumbnail[’100x100’].url{{
instance.image_field.thumbnail.100x100
}}

Inverted Image
(Full Size)

’filters__invert’instance.image_field.filters.invert.url{{
instance.image_field.filters.invert
}}

Inverted
Image, 50px
by 50px crop

’filters__invert__crop__50x50’instance.image_field.filters.invert.crop[’50x50’].url{{
instance.image_field.filters.invert.crop.50x50
}}

Using Rendition Key Sets

Rendition Key sets are useful! Read up on how they can help you...

• ... serializing VersatileImageField instances within Django REST Framework.

• ... ‘warm’ images to improve performance.

2.2 Model Integration

The centerpiece of django-versatileimagefield is its VersatileImageField which provides a simple,
flexible interface for creating new images from the image you assign to it.

VersatileImageField extends django’s ImageField and can be used as a drop-in replacement for it. Here’s
a simple example model that depicts a typical usage of django’s ImageField:

models.py with ‘ImageField‘
from django.db import models

class ImageExampleModel(models.Model):
name = models.CharField(

’Name’,
max_length=80

)
image = models.ImageField(

2.2. Model Integration 7

django-versatileimagefield Documentation, Release 0.1.1

’Image’,
upload_to=’images/testimagemodel/’,
width_field=’width’,
height_field=’height’

)
height = models.PositiveIntegerField(

’Image Height’,
blank=True,
null=True

)
width = models.PositiveIntegerField(

’Image Width’,
blank=True,
null=True

)

class Meta:
verbose_name = ’Image Example’
verbose_name_plural = ’Image Examples’

And here’s that same model using VersatileImageField instead (see highlighted section in the code block
below):

models.py with ‘VersatileImageField‘
from django.db import models

from versatileimagefield.fields import VersatileImageField

class ImageExampleModel(models.Model):
name = models.CharField(

’Name’,
max_length=80

)
image = VersatileImageField(

’Image’,
upload_to=’images/testimagemodel/’,
width_field=’width’,
height_field=’height’

)
height = models.PositiveIntegerField(

’Image Height’,
blank=True,
null=True

)
width = models.PositiveIntegerField(

’Image Width’,
blank=True,
null=True

)

class Meta:
verbose_name = ’Image Example’
verbose_name_plural = ’Image Examples’

Note: VersatileImageField is fully interchangable with django.db.models.ImageField which means you can
revert back anytime you’d like. It’s fully-compatible with south so migrate to your heart’s content!

8 Chapter 2. Table of Contents

https://docs.djangoproject.com/en/dev/ref/models/fields/#imagefield
http://south.readthedocs.org/en/latest/index.html

django-versatileimagefield Documentation, Release 0.1.1

2.2.1 Specifying Placeholder Images

For VersatileImageField fields that are set to blank=True you can optionally specify a placeholder image
to be used when its sizers and filters are accessed (like a generic silouette for a non-existant user profile image, for
instance).

You have two options for specifying placeholder images:

1. OnDiscPlaceholderImage: If you want to use an image stored on the same disc as your project’s code-
base.

2. OnStoragePlaceholderImage: If you want to use an image that can be accessed directly with a django
storage class.

Note: All placeholder images are transferred-to and served-from the storage class of their associated field.

OnDiscPlaceholderImage

A placeholder image that is stored on the same disc as your project’s codebase. Let’s add a new, optional
VersatileImageField to our example model to demonstrate:

models.py
import os

from django.db import models

from versatileimagefield.fields import VersatileImageField
from versatileimagefield.placeholder import OnDiscPlaceholderImage

class ImageExampleModel(models.Model):
name = models.CharField(

’Name’,
max_length=80

)
image = VersatileImageField(

’Image’,
upload_to=’images/testimagemodel/’,
width_field=’width’,
height_field=’height’

)
height = models.PositiveIntegerField(

’Image Height’,
blank=True,
null=True

)
width = models.PositiveIntegerField(

’Image Width’,
blank=True,
null=True

)
optional_image = VersatileImageField(

’Optional Image’,
upload_to=’images/testimagemodel/optional/’,
blank=True,
placeholder_image=OnDiscPlaceholderImage(

path=os.path.join(
os.path.dirname(os.path.abspath(__file__)),

2.2. Model Integration 9

django-versatileimagefield Documentation, Release 0.1.1

’placeholder.gif’
)

)
)

class Meta:
verbose_name = ’Image Example’
verbose_name_plural = ’Image Examples’

Note: In the above example the os library was used to determine the on-disc path of an image (placeholder.gif)
that was stored in the same directory as models.py.

Where OnDiscPlaceholderImage saves images to

All placeholder images are automatically saved into the same storage as the
field they are associated with into a top-level-on-storage directory named by the
VERSATILEIMAGEFIELD_SETTINGS[’placeholder_directory_name’] setting (defaults to
’__placeholder__’ docs).

Placeholder images defined by OnDiscPlaceholderImage will simply be saved into the placeholder directory
(defaults to ’__placeholder__’ docs). The placeholder image defined in the example above would be saved to
’__placeholder__/placeholder.gif’.

OnStoragePlaceholderImage

A placeholder image that can be accessed with a django storage class. Example:

models.py
from django.db import models

from versatileimagefield.fields import VersatileImageField
from versatileimagefield.placeholder import OnStoragePlaceholderImage

class ImageExampleModel(models.Model):
name = models.CharField(

’Name’,
max_length=80

)
image = VersatileImageField(

’Image’,
upload_to=’images/testimagemodel/’,
width_field=’width’,
height_field=’height’

)
height = models.PositiveIntegerField(

’Image Height’,
blank=True,
null=True

)
width = models.PositiveIntegerField(

’Image Width’,
blank=True,
null=True

)
optional_image = VersatileImageField(

10 Chapter 2. Table of Contents

django-versatileimagefield Documentation, Release 0.1.1

’Optional Image’,
upload_to=’images/testimagemodel/optional/’,
blank=True,
placeholder_image=OnStoragePlaceholderImage(

path=’images/placeholder.gif’
)

)

class Meta:
verbose_name = ’Image Example’
verbose_name_plural = ’Image Examples’

By default, OnStoragePlaceholderImage will look look for this image in your default storage class (as deter-
mined by default_storage) but you can explicitly specify a custom storage class with the optional keyword argument
storage:

models.py
from django.db import models

from versatileimagefield.fields import VersatileImageField
from versatileimagefield.placeholder import OnStoragePlaceholderImage

from .storage import CustomStorageCls

class ImageExampleModel(models.Model):
name = models.CharField(

’Name’,
max_length=80

)
image = VersatileImageField(

’Image’,
upload_to=’images/testimagemodel/’,
width_field=’width’,
height_field=’height’

)
height = models.PositiveIntegerField(

’Image Height’,
blank=True,
null=True

)
width = models.PositiveIntegerField(

’Image Width’,
blank=True,
null=True

)
optional_image = VersatileImageField(

’Optional Image’,
upload_to=’images/testimagemodel/optional/’,
blank=True,
placeholder_image=OnStoragePlaceholderImage(

path=’images/placeholder.gif’,
storage=CustomStorageCls()

)
)

class Meta:
verbose_name = ’Image Example’
verbose_name_plural = ’Image Examples’

2.2. Model Integration 11

https://docs.djangoproject.com/en/dev/topics/files/#file-storage

django-versatileimagefield Documentation, Release 0.1.1

Where OnStoragePlaceholderImage saves images to

Placeholder images defined by OnStoragePlaceholderImage will be saved into the placeholder directory (de-
faults to ’__placeholder__’ docs) within the same folder heirarchy as their original storage class. The place-
holder image used in the example above would be saved to ’__placeholder__/image/placeholder.gif.

2.3 Specifying a Primary Point of Interest (PPOI)

The crop Sizer is super-useful for creating images at a specific size/aspect-ratio however, sometimes you want the
‘crop centerpoint’ to be somewhere other than the center of a particular image. In fact, the initial inspiration for
django-versatileimagefield came as a result of tackling this very problem.

The crop Sizer’s core functionality (located in the versatileimagefield.versatileimagefield.CroppedImage.crop_on_centerpoint
method) was inspired by PIL’s ImageOps.fit function (by Kevin Cazabon) which takes an optional keyword argument,
centering, that expects a 2-tuple comprised of floats which are greater than or equal to 0 and less than or equal to
1. These two values together form a cartesian coordinate system that dictates what percentage of pixels to ‘trim’ off
each of the long sides (i.e. left/right or top/bottom, depending on the aspect ratio of the cropped size vs. the original
size):

Left Center Right
Top (0.0, 0.0) (0.0, 0.5) (0.0, 1.0)
Middle (0.5, 0.0) (0.5, 0.5) (0.5, 1.0)
Bottom (1.0, 0.0) (1.0, 0.5) (1.0, 1.0)

The crop Sizer works in a similar way but converts the 2-tuple into an exact (x, y) pixel coordinate which is then used
as the ‘centerpoint’ of the crop. This approach gives significantly more accurate results than using ImageOps.fit,
especially when dealing with PPOI values located near the edges of an image or aspect ratios that differ significantly
from the original image.

Note: Even though the PPOI value is used as a crop ‘centerpoint’, the pixel it corresponds to won’t necessarily be in
the center of the cropped image, especially if its near the edges of the original image.

Note: At present, only the crop Sizer changes how it creates images based on PPOI but a
VersatileImageField makes its PPOI value available to ALL its attached Filters and Sizers. Get creative!

2.3.1 The PPOIField

Each image managed by a VersatileImageField can store its own, unique PPOI in the database via the easy-
to-use PPOIField. Here’s how to integrate it into our example model (relevant lines highlighted in the code block
below):

models.py with ‘VersatileImageField‘ & ‘PPOIField‘
from django.db import models

from versatileimagefield.fields import VersatileImageField, \
PPOIField

class ImageExampleModel(models.Model):
name = models.CharField(

’Name’,
max_length=80

)

12 Chapter 2. Table of Contents

http://pillow.readthedocs.org/en/latest/reference/ImageOps.html#PIL.ImageOps.fit
http://www.cazabon.com/

django-versatileimagefield Documentation, Release 0.1.1

image = VersatileImageField(
’Image’,
upload_to=’images/testimagemodel/’,
width_field=’width’,
height_field=’height’,
ppoi_field=’ppoi’

)
height = models.PositiveIntegerField(

’Image Height’,
blank=True,
null=True

)
width = models.PositiveIntegerField(

’Image Width’,
blank=True,
null=True

)
ppoi = PPOIField(

’Image PPOI’
)

class Meta:
verbose_name = ’Image Example’
verbose_name_plural = ’Image Examples’

As you can see, you’ll need to add a new PPOIField field to your model and then include the name of that field in
the VersatileImageField‘s ppoi_field keyword argument. That’s it!

Note: PPOIField is fully-compatible with south so migrate to your heart’s content!

How PPOI is Stored in the Database

The Primary Point of Interest is stored in the database as a string with the x and y coordinates limited to two decimal
places and separated by an ‘x’ (for instance: ’0.5x0.5’ or ’0.62x0.28’).

2.3.2 Setting PPOI

PPOI is set via the ppoi attribute on a VersatileImageField. You should always set an image’s PPOI here (as
opposed to directly on a PPOIField attribute) since a VersatileImageField will ensure updated values are
passed-down to all its attached Filters & Sizers.

When you save a model instance, VersatileImageField will ensure its currently-assigned PPOI value is ‘sent’
to the PPOIField associated with it (if any) prior to writing to the database.

Via The Shell

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Retrieving the current PPOI value associated with the image field
A ‘VersatileImageField‘’s PPOI value is ALWAYS associated with the ‘ppoi‘
attribute, irregardless of what you named the ‘PPOIField‘ attribute on your model
>>> example.image.ppoi

2.3. Specifying a Primary Point of Interest (PPOI) 13

http://south.readthedocs.org/en/latest/index.html

django-versatileimagefield Documentation, Release 0.1.1

(0.5, 0.5)
Creating a cropped image
>>> example.image.crop[’400x400’].url
u’/media/__sized__/images/testimagemodel/test-image-crop-c0-5__0-5-400x400.jpg’
Changing the PPOI value
>>> example.image.ppoi = (1, 1)
Creating a new cropped image with the new PPOI value
>>> example.image.crop[’400x400’].url
u’/media/__sized__/images/testimagemodel/test-image-crop-c1__1-400x400.jpg’
PPOI values can be set as either a tuple or a string
>>> example.image.ppoi = ’0.1x0.55’
>>> example.image.ppoi
(0.1, 0.55)
>>> example.image.ppoi = (0.75, 0.25)
>>> example.image.crop[’400x400’].url
u’/media/__sized__/images/testimagemodel/test-image-crop-c0-75__0-25-400x400.jpg’
u’0.75x0.25’ is written to the database in the ’ppoi’ column associated with
our example model
>>> example.save()

As you can see, changing an image’s PPOI changes the filename of the cropped image. This ensures updates to a
VersatileImageField‘s PPOI value will result in unique cache entries for each unique image it creates.

Note: Each time a field’s PPOI is set, its attached Filters & Sizers will be immediately updated with the new value.

2.3.3 FormField/Admin Integration

It’s pretty hard to accurately set a particular image’s PPOI when working in the Python shell so
django-versatileimagefield ships with an admin-ready formfield. Simply add an image, click ‘Save and
continue editing’, click where you’d like the PPOI to be and then save your model instance again. A helpful translucent
red square will indicate where the PPOI value is currently set to on the image:

Note: PPOIField is not editable so it will be automatically excluded from the admin.

2.4 Using Sizers and Filters

Where VersatileImageField shines is in its ability to create new images on the fly via its Sizer & Filter frame-
work.

2.4.1 Sizers

Sizers provide a way to create new images of differing sizes from the one assigned to the field.
VersatileImageField ships with two Sizers, thumbnail and crop.

Each Sizer registered to the Sizer registry is available as an attribute on each VersatileImageField. Sizers
are dict subclasses that only accept precisely formatted keys comprised of two integers – representing width and
height, respectively – separated by an ‘x’ (i.e. [’400x400’]). If you send a malformed/invalid key to a Sizer, a
MalformedSizedImageKey exception will raise.

14 Chapter 2. Table of Contents

django-versatileimagefield Documentation, Release 0.1.1

Figure 2.1: django-versatileimagefield PPOI admin widget example

Included Sizers

thumbnail

Here’s how you would create a thumbnail image that would be constrained to fit within a 400px by 400px area:

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Displaying the path-on-storage of the image currently assigned to the field
>>> example.image.name
u’images/testimagemodel/test-image.jpg’
Retrieving the path on the field’s storage class to a 400px wide
by 400px tall constrained thumbnail of the image.
>>> example.image.thumbnail[’400x400’].name
u’__sized__/images/testimagemodel/test-image-thumbnail-400x400.jpg’
Retrieving the URL to the 400px wide by 400px tall thumbnail
>>> example.image.thumbnail[’400x400’].url
u’/media/__sized__/images/testimagemodel/test-image-thumbnail-400x400.jpg’

Note: Images are created on-demand. If no image had yet existed at the location required – by either the path (.name)
or URL (.url) shown in the highlighted lines above – one would have been created directly before returning it.

Here’s how you’d open the thumbnail image we just created as an image file directly in the shell:

>>> thumbnail_image = example.image.field.storage.open(
... example.image.thumbnail[’400x400’].name
...)

2.4. Using Sizers and Filters 15

django-versatileimagefield Documentation, Release 0.1.1

crop

To create images cropped to a specific size, use the crop Sizer:

Retrieving the URL to a 400px wide by 400px tall crop of the image
>>> example.image.crop[’400x400’].url
u’/media/__sized__/images/testimagemodel/test-image-crop-c0-5__0-5-400x400.jpg’

The crop Sizer will first scale an image down to its longest side and then crop/trim inwards, centered on the Primary
Point of Interest (PPOI, for short). For more info about what PPOI is and how it’s used see the Specifying a Primary
Point of Interest (PPOI) section.

How Sized Image Files are Named/Stored All Sizers subclass from versatileimagefield.datastructures.sizedimage.SizedImage
which uses a unique-to-size-specified string – provided via its get_filename_key() method – that is included
in the filename of each image it creates.

Note: The thumbnail Sizer simply combines ’thumbnail’ with the size key passed (i.e. ’400x400’) while
the crop Sizer combines ’crop’, the field’s PPOI value (as a string) and the size key passed; all Sizer ‘filename
keys’ begin and end with dashes ’-’ for readability.

All images created by a Sizer are stored within the field’s storage class in a top-level folder named
’__sized__’, maintaining the same descendant folder structure as the original image. If you’d
like to change the name of this folder to something other than ’__sized__’, adjust the value of
VERSATILEIMAGEFIELD_SETTINGS[’sized_directory_name’] within your settings file.

Sizers are quick and easy to write, for more information about how it’s done, see the Writing a Custom Sizer section.

2.4.2 Filters

Filters create new images that are the same size and aspect ratio as the original image.

Included Filters

invert

The invert filter will invert the color palette of an image:

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Returning the path-on-storage to the image currently assigned to the field
>>> example.image.name
u’images/testimagemodel/test-image.jpg’
Displaying the path (within the field’s storage class) to an image
with an inverted color pallete from that of the original image
>>> example.image.filters.invert.name
u’images/testimagemodel/__filtered__/test-image__invert__.jpg’
Displaying the URL to the inverted image
>>> example.image.filters.invert.url
u’/media/images/testimagemodel/__filtered__/test-image__invert__.jpg’

As you can see, there’s a filters attribute available on each VersatileImageField which contains all filters
currently registered to the Filter registry.

16 Chapter 2. Table of Contents

django-versatileimagefield Documentation, Release 0.1.1

Using Sizers with Filters

What makes Filters extra-useful is that they have access to all registered Sizers:

Creating a thumbnail of a filtered image
>>> example.image.filters.invert.thumbnail[’400x400’].url
u’/media/__sized__/images/testimagemodel/__filtered__/test-image__invert__-thumbnail-400x400.jpg’
Creating a crop from a filtered image
>>> example.image.filters.invert.crop[’400x400’].url
u’/media/__sized__/images/testimagemodel/__filtered__/test-image__invert__-c0-5__0-5-400x400.jpg’

Note: Filtered images are created the first time they are directly accessed (by either evaluating their name/url
attributes or by accessing a Sizer attached to it). Once created, a reference is stored in the cache for each created image
which makes for speedy subsequent retrievals.

How Filtered Image Files are Named/Stored

All Filters subclass from versatileimagefield.datastructures.filteredimage.FilteredImage
which provides a get_filename_key() method that returns a unique-to-filter-specified string – surrounded by
double underscores, i.e. ’__invert__’ – which is appended to the filename of each image it creates.

All images created by a Filter are stored within a folder named __filtered__ that sits in the same directory as the
original image. If you’d like to change the name of this folder to something other than ‘filtered‘, adjust the value of
VERSATILEIMAGEFIELD_SETTINGS[’filtered_directory_name’] within your settings file.

Filters are quick and easy to write, for more information about creating your own, see the Writing a Custom Filter
section.

2.4.3 Using Sizers / Filters in Templates

Template usage is straight forward and easy since both attributes and dictionary keys can be accessed via dot-notation;
no crufty templatetags necessary:

<!-- Sizers -->

<!-- Filters -->

<!-- Filters + Sizers -->

Note: Using the url attribute on Sizers is optional in templates. Why? All Sizers return an instance of
versatileimagefield.datastructures.sizedimage.SizedImageInstance which provides the
sized image’s URL via the __unicode__() method (which django’s templating engine looks for when asked to
render class instances directly).

2.4. Using Sizers and Filters 17

django-versatileimagefield Documentation, Release 0.1.1

2.5 Writing Custom Sizers and Filters

It’s quick and easy to create new Sizers and Filters for use on your project’s VersatileImageField fields or
modify already-registered Sizers and Filters.

Both Sizers and Filters subclass from versatileimagefield.datastructures.base.ProcessedImage
which provides a preprocessing API as well as all the business logic necessary to retrieve and save images.

The ‘meat’ of each Sizer & Filter – a.k.a what actually modifies the original image – takes place within the
process_image method which all subclasses must define (not doing so will raise a NotImplementedError).
Sizers and Filters expect slightly different keyword arguments (Sizers required width and height, for example) see
below for specifics:

2.5.1 Writing a Custom Sizer

All Sizers should subclass versatileimagefield.datastructures.sizedimage.SizedImage and, at
a minimum, MUST do two things:

1. Define either the filename_key attribute or override the get_filename_key() method which is nec-
essary for creating unique-to-Sizer-and-size-specified filenames. If neither of the aforementioned is done a
NotImplementedError exception will be raised.

2. Define a process_image method that accepts the following arguments:

• image: a PIL Image instance

• image_format: A valid image mime type (e.g. ‘image/jpeg’). This is provided by the
create_resized_image method (which calls process_image).

• save_kwargs: A dict of any keyword arguments needed by PIL’s Image.save method (initially
provided by the pre-processing API).

• width: An integer representing the width specified by the user in the size key.

• height: An integer representing the height specified by the user in the size key.

For an example, let’s take a look at the thumbnail Sizer (versatileimagefield.versatileimagefield.ThumbnailImage):

import StringIO

from PIL import Image

from .datastructures import SizedImage

class ThumbnailImage(SizedImage):
"""
Sizes an image down to fit within a bounding box

See the ‘process_image()‘ method for more information
"""

filename_key = ’thumbnail’

def process_image(self, image, image_format, save_kwargs,
width, height):

"""
Returns a StringIO instance of ‘image‘ that will fit
within a bounding box as specified by ‘width‘x‘height‘
"""

18 Chapter 2. Table of Contents

django-versatileimagefield Documentation, Release 0.1.1

imagefile = StringIO.StringIO()
image.thumbnail(

(width, height),
Image.ANTIALIAS

)
image.save(

imagefile,

**save_kwargs
)
return imagefile

Important: process_image should always return a StringIO instance. See What process_image should return
for more information.

2.5.2 Writing a Custom Filter

All Filters should subclass versatileimagefield.datastructures.filteredimage.FilteredImage
and only need to define a process_filter method with following arguments:

• image: a PIL Image instance

• image_format: A valid image mime type (e.g. ‘image/jpeg’). This is provided by the
create_resized_image() method (which calls process_image).

• save_kwargs: A dict of any keyword arguments needed by PIL’s Image.savemethod (initially provided
by the pre-processing API).

For an example, let’s take a look at the invert Filter (versatileimagefield.versatileimagefield.InvertImage):

import StringIO

from PIL import ImageOps

from .datastructures import FilteredImage

class InvertImage(FilteredImage):
"""
Inverts the colors of an image.

See the ‘process_image()‘ for more specifics
"""

def process_image(self, image, image_format, save_kwargs={}):
"""
Returns a StringIO instance of ‘image‘ with inverted colors
"""
imagefile = StringIO.StringIO()
inv_image = ImageOps.invert(image)
inv_image.save(

imagefile,

**save_kwargs
)
return imagefile

Important: process_image should always return a StringIO instance. See What process_image should return
for more information.

2.5. Writing Custom Sizers and Filters 19

django-versatileimagefield Documentation, Release 0.1.1

2.5.3 What process_image should return

Any process_image method you write should always return a StringIO instance comprised of raw image
data. The actual image file will be written to your field’s storage class via the save_image method. Note how
save_kwargs is passed into PIL’s Image.save method in the examples above, this ensures PIL knows how to
write this data (based on mime type or any other per-filetype specific options provided by the preprocessing API).

2.5.4 The Pre-processing API

Both Sizers and Filters have access to a pre-processing API that provides hooks for doing any per-mime-type process-
ing. This allows your Sizers and Filters to do one thing for JPEGs and another for GIFs, for instance. One example of
this is in how Sizers ‘know’ how to preserve transparency for GIFs or save JPEGs as RGB (at the user-defined quality):

versatileimagefield/datastructures/sizedimage.py
class SizedImage(ProcessedImage, dict):

"<a bunch of ommited code here>"

def preprocess_GIF(self, image, **kwargs):
"""
Receives a PIL Image instance of a GIF and returns 2-tuple:

* [0]: Original Image instance (passed to ‘image‘)

* [1]: Dict with a transparency key (to GIF transparency layer)
"""
return (image, {’transparency’: image.info[’transparency’]})

def preprocess_JPEG(self, image, **kwargs):
"""
Receives a PIL Image instance of a JPEG and returns 2-tuple:

* [0]: Image instance, converted to RGB

* [1]: Dict with a quality key (mapped to the value of ‘QUAL‘ as
defined by the ‘VERSATILEIMAGEFIELD_JPEG_RESIZE_QUALITY‘
setting)

"""
if image.mode != ’RGB’:

image = image.convert(’RGB’)
return (image, {’quality’: QUAL})

All pre-processors should accept one required argument image (A PIL Image instance) and **kwargs (for easy
extension by subclasses) and return a 2-tuple of the image and a dict of any additional keyword arguments to pass
along to PIL’s Image.save method.

Pre-processor Naming Convention

In order for preprocessor methods to run, they need to be named correctly via this simple naming convention:
preprocess_FILETYPE. Here’s a list of all currently-supported file types:

• BMP

• DCX

• EPS

• GIF

• JPEG

• PCD

20 Chapter 2. Table of Contents

django-versatileimagefield Documentation, Release 0.1.1

• PCX

• PDF

• PNG

• PPM

• PSD

• TIFF

• XBM

• XPM

So, if you’d want to write a PNG-specific preprocessor, your Sizer or Filter would need to define a method named
preprocess_PNG.

Note: I’ve only tested VersatileImageFieldwith PNG, GIF and JPEG files; the list above is what PIL supports,
for more information about per filetype support in PIL visit here.

2.5.5 Registering Sizers and Filters

Registering Sizers and Filters is easy and straight-forward; if you’ve ever registered a model with django’s admin
you’ll feel right at home.

django-versatileimagefield finds Sizers & Filters within modules named versatileimagefield –
(i.e. versatileimagefield.py) that are available at the ‘top level’ of each app on INSTALLED_APPS.

Here’s an example:

somedjangoapp/
__init__.py
models.py # Models
admin.py # Admin config
versatilimagefield.py # Custom Sizers and Filters here

After defining your Sizers and Filters you’ll need to register them with the versatileimagefield_registry.
Here’s how the ThumbnailSizer is registered (see the highlighted lines in the following code block for the relevant
bits):

versatileimagefield/versatileimagefield.py
import StringIO

from PIL import Image

from .datastructures import SizedImage
from .registry import versatileimagefield_registry

class ThumbnailImage(SizedImage):
"""
Sizes an image down to fit within a bounding box

See the ‘process_image()‘ method for more information
"""

filename_key = ’thumbnail’

2.5. Writing Custom Sizers and Filters 21

https://infohost.nmt.edu/tcc/help/pubs/pil/formats.html

django-versatileimagefield Documentation, Release 0.1.1

def process_image(self, image, image_format, save_kwargs,
width, height):

"""
Returns a StringIO instance of ‘image‘ that will fit
within a bounding box as specified by ‘width‘x‘height‘
"""
imagefile = StringIO.StringIO()
image.thumbnail(

(width, height),
Image.ANTIALIAS

)
image.save(

imagefile,

**save_kwargs
)
return imagefile

Registering the ThumbnailSizer to be available on VersatileImageField
via the ‘thumbnail‘ attribute
versatileimagefield_registry.register_sizer(’thumbnail’, ThumbnailImage)]

All Sizers are registered via the versatileimagefield_registry.register_sizer method. The first
argument is the attribute you want to make the Sizer available at and the second is the SizedImage subclass.

Filters are just as easy. Here’s how the InvertImage filter is registered (see the highlighted lines in the following
code block for the relevant bits):

import StringIO

from PIL import ImageOps

from .datastructures import FilteredImage
from .registry import versatileimagefield_registry

class InvertImage(FilteredImage):
"""
Inverts the colors of an image.

See the ‘process_image()‘ for more specifics
"""

def process_image(self, image, image_format, save_kwargs={}):
"""
Returns a StringIO instance of ‘image‘ with inverted colors
"""
imagefile = StringIO.StringIO()
inv_image = ImageOps.invert(image)
inv_image.save(

imagefile,

**save_kwargs
)
return imagefile

versatileimagefield_registry.register_filter(’invert’, InvertImage)

All Filters are registered via the versatileimagefield_registry.register_filter method. The first
argument is the attribute you want to make the Filter available at and the second is the FilteredImage subclass.

22 Chapter 2. Table of Contents

django-versatileimagefield Documentation, Release 0.1.1

Unallowed Sizer & Filter Names

Sizer and Filter names cannot begin with an underscore as it would prevent them from being accessible within the
template layer. Additionally, since Sizers are available for use directly on a VersatileImageField, there are
some Sizer names that are unallowed; trying to register a Sizer with one of the following names will result in a
UnallowedSizerName exception:

• build_filters_and_sizers

• chunks

• close

• closed

• create_on_demand

• delete

• encoding

• field

• file

• fileno

• filters

• flush

• height

• instance

• isatty

• multiple_chunks

• name

• newlines

• open

• path

• ppoi

• read

• readinto

• readline

• readlines

• save

• seek

• size

• softspace

• storage

• tell

• truncate

2.5. Writing Custom Sizers and Filters 23

django-versatileimagefield Documentation, Release 0.1.1

• url

• validate_ppoi

• width

• write

• writelines

• xreadlines

2.5.6 Overriding an existing Sizer or Filter

If you try to register a Sizer or Filter with an attribute name that’s already in use (like crop or thumbnail or
invert), an AlreadyRegistered exception will raise.

Caution: A Sizer can have the same name as a Filter (since names are only required to be unique per type)
however it’s not recommended.

If you’d like to override an already-registered Sizer or Filter just use either the unregister_sizer or
unregister_filter methods of versatileimagefield_registry. Here’s how you could ‘override’
the crop Sizer:

from versatileimagefield.registry import versatileimagefield_registry

Unregistering the ’crop’ Sizer
versatileimagefield_registry.unregister_sizer(’crop’)
Registering a custom ’crop’ Sizer
versatileimagefield_registry.register_sizer(’crop’, SomeCustomSizedImageCls)

The order that Sizers and Filters register corresponds to their containing app’s position on INSTALLED_APPS.
This means that if you want to override one of the default Sizers or Filters your app needs to be included after
’versatileimagefield’:

settings.py
INSTALLED_APPS = (

’versatileimagefield’,
’yourcustomapp’ # This app can override the default Sizers and Filters

)

2.6 Django REST Framework Integration

If you’ve got an API powered by Tom Christie‘s excellent Django REST Framework and want to
serve images in multiple sizes/renditions django-versatileimagefield has you covered with it’s
VersatileImageFieldSerializer.

2.6.1 Example

To demonstrate how it works we’ll use this simple model:

myproject/person/models.py

from django.db import models

24 Chapter 2. Table of Contents

https://twitter.com/_tomchristie
http://www.django-rest-framework.org/

django-versatileimagefield Documentation, Release 0.1.1

from versatileimagefield.fields import VersatileImageField, PPOIField

class Person(models.Model):
"""Represents a person."""
name_first = models.CharField(’First Name’, max_length=80)
name_last = models.CharField(’Last Name’, max_length=100)
headshot = VersatileImageField(

’Headshot’,
upload_to=’headshots/’,
ppoi_field=’headshot_ppoi’

)
headshot_ppoi = PPOIField()

class Meta:
verbose_name = ’Person’
verbose_name_plural = ’People’

OK, let’s write a simple ModelSerializer subclass to serialize Person instances:

myproject/person/serializers.py

from rest_framework import serializers

from versatileimagefield.serializers import VersatileImageFieldSerializer

from .models import Person

class PersonSerializer(serializers.ModelSerializer):
"""Serializes Person instances"""
headshot = VersatileImageFieldSerializer(

sizes=[
(’full_size’, ’url’),
(’thumbnail’, ’thumbnail__100x100’),
(’medium_square_crop’, ’crop__400x400’),
(’small_square_crop’, ’crop__50x50’)

]
)

class Meta:
model = Person
fields = (

’name_first’,
’name_last’,
’headshot’

)

And here’s what it would look like serialized:

>>> from myproject.person.models import Person
>>> john_doe = Person.objects.create(
... name_first=’John’,
... name_last=’Doe’,
... headshot=’headshots/john_doe_headshot.jpg’
...)
>>> john_doe.save()
>>> from myproject.person.serializers import PersonSerializer
>>> john_doe_serialized = PersonSerializer(john_doe)

2.6. Django REST Framework Integration 25

django-versatileimagefield Documentation, Release 0.1.1

>>> john_doe_serialized.data
{

’name_first’: ’John’,
’name_last’: ’Doe’,
’headshot’: {

’full_size’: ’/media/headshots/john_doe_headshot.jpg’,
’thumbnail’: ’/media/headshots/john_doe_headshot-thumbnail-400x400.jpg’,
’medium_square_crop’: ’/media/headshots/john_doe_headshot-crop-c0-5__0-5-400x400.jpg’,
’small_square_crop’: ’/media/headshots/john_doe_headshot-crop-c0-5__0-5-50x50.jpg’,

}
}

As you can see, the sizes argument on VersatileImageFieldSerializer simply unpacks the list of 2-
tuples using the value in the first position as the attribute of the image and the second position as a ‘Rendition Key’
which dictates how the original image should be modified.

Reusing Rendition Key Sets

It’s common to want to re-use similar sets of images across models and fields so
django-versatileimagefield provides a setting, VERSATILEIMAGEFIELD_RENDITION_KEY_SETS
for defining them (docs).

Let’s move the Rendition Key Set we used above into our settings file:

myproject/settings.py

VERSATILEIMAGEFIELD_RENDITION_KEY_SETS = {
’person_headshot’: [

(’full_size’, ’url’),
(’thumbnail’, ’thumbnail__100x100’),
(’medium_square_crop’, ’crop__400x400’),
(’small_square_crop’, ’crop__50x50’)

]
}

Now, let’s update our serializer to use it:

myproject/person/serializers.py

from rest_framework import serializers

from versatileimagefield.serializers import VersatileImageFieldSerializer

from .models import Person

class PersonSerializer(serializers.ModelSerializer):
"""Serializes Person instances"""
headshot = VersatileImageFieldSerializer(

sizes=’person_headshot’
)

class Meta:
model = Person
fields = (

’name_first’,
’name_last’,

26 Chapter 2. Table of Contents

django-versatileimagefield Documentation, Release 0.1.1

’headshot’
)

That’s it! Now that you know how to define Rendition Key Sets, leverage them to improve performance!

2.7 Improving Performance

During development, VersatileImageField‘s on-demand image creation enables you to quickly iterate but,
once your application is deployed, this convenience adds a small bit of overhead that you’ll probably want to turn off
once your app is in production.

2.7.1 Turning off on-demand image creation

To turn off on-demand image creation just set the ’create_images_on_demand’ key of the
VERSATILEIMAGEFIELD_SETTINGS setting to False (docs). Now your VersatileImageField fields will
return URLs to images without first checking to see if they’ve actually been created yet.

Note: Once an image has been created by a VersatileImageField, a refer-
ence to it is stored in the cache which makes for speedy subsequent retrievals. Setting
VERSATILEIMAGEFIELD_SETTINGS[’create_images_on_demand’] to False bypasses this en-
tirely making VersatileImageField perform even faster (docs).

2.7.2 Ensuring images are created

This boost in performance is great but now you’ll need to ensure that the images your application links to actually
exist. Luckily, VersatileImageFieldWarmer will help you do just that. Here’s an example in the Python shell
using the example model from the Django REST Framework serialization example:

>>> from myproject.person.models import Person
>>> from versatileimagefield.image_warmer import VersatileImageFieldWarmer
>>> person_img_warmer = VersatileImageFieldWarmer(
... instance_or_queryset=Person.objects.all(),
... rendition_key_set=’person_headshot’,
... image_attr=’headshot’,
... verbose=True
...)
>>> num_created, failed_to_create = person_img_warmer.warm()

num_created will be an integer of how many images were successfully created and failed_to_create will be
a list of paths to images (on the field’s storage class) that could not be created (due to a PIL/Pillow error, for example).

This technique is useful if you’ve recently converted your project’s models.ImageField fields to use
VersatileImageField or if you want to ‘pre warm’ images as part of a Fabric script.

Note: The above example would create a set of images (as dictated by the ’person_headshot’ Rendition Key
Set) for the headshot field of each Person instance. rendition_key_set also accepts a valid Rendition Key
Set directly:

>>> person_img_warmer = VersatileImageFieldWarmer(
... instance_or_queryset=Person.objects.all(),
... rendition_key_set=[
... (’large_horiz_crop’, ’1200x600’),

2.7. Improving Performance 27

https://pillow.readthedocs.org/
http://www.fabfile.org/

django-versatileimagefield Documentation, Release 0.1.1

... (’large_vert_crop’, ’600x1200’),

...],

... image_attr=’headshot’,

... verbose=True

...)

Note: Setting verbose=True when instantiating a VersatileImageFieldWarmer will display a yum-style
progress bar showing the image warming progress:

>>> num_created, failed_to_create = person_img_warmer.warm()
[###########--] 20/100 (20%)

Note: The image_attr argument can be dot-notated in order to follow ForeignKey and OneToOneField
relationships. Example: ’related_model.headshot’.

Auto-creating sets of images on post_save

You also might want to create new images immediately after model instances are saved. Here’s how we’d do it with
our example model (see highlighted lines below):

myproject/person/models.py

from django.db import models
from django.dispatch import receiver

from versatileimagefield.fields import VersatileImageField, PPOIField
from versatileimagefield.image_warmer import VersatileImageFieldWarmer

class Person(models.Model):
"""Represents a person."""
name_first = models.CharField(’First Name’, max_length=80)
name_last = models.CharField(’Last Name’, max_length=100)
headshot = VersatileImageField(

’Headshot’,
upload_to=’headshots/’,
ppoi_field=’headshot_ppoi’

)
headshot_ppoi = PPOIField()

class Meta:
verbose_name = ’Person’
verbose_name_plural = ’People’

@receiver(models.signals.post_save, sender=Person)
def warm_Person_headshot_images(sender, instance, **kwargs):

"""Ensures Person head shots are created post-save"""
person_img_warmer = VersatileImageFieldWarmer(

instance_or_queryset=instance,
rendition_key_set=’person_headshot’,
image_attr=’headshot’

)
num_created, failed_to_create = person_img_warmer.warm()

28 Chapter 2. Table of Contents

CHAPTER 3

Release Notes

3.1 0.6.1

• Squashed a bug that was throwing an AttributeError when uploading new images.

3.2 0.6

• Squashed a bug that raised a ValueError in the admin when editing a model instance with a
VersatileImageField that specified ppoi_field, width_field and height_field.

• Admin ‘click’ widget now works in Firefox.

• django-versatileimagefield is now available for installation via wheel.

3.3 0.5.4

• Squashed a bug that was causing the admin ‘click’ widget to intermittently fail

• Simplified requirements installation (which makes django-versatileimagefield installable by pip<=1.6)

3.4 0.5.3

• Changed PPOIField to be editable=False by default to address a bug that consistently raised
ValidationError in ModelForms and the admin

3.5 0.5.2

• Squashed a bug that prevented PPOIField from serializing correctly

3.6 0.5.1

• Squashed an installation bug with pip 6+

29

http://wheel.readthedocs.org/en/latest/
https://github.com/WGBH/django-versatileimagefield/issues/7

django-versatileimagefield Documentation, Release 0.1.1

3.7 0.5

• Added Python 3.3 & 3.4 compatibility

• Improved cropping with extreme PPOI values

3.8 0.4

• Dropped support for Django 1.5.x

• Introducing per-field placeholder image image support! (Note: global placeholder support has been deprecated.)

• Added the VERSATILEIMAGEFIELD_USE_PLACEHOLDIT setting (docs)

3.9 0.3.1

• Squashed a pip installation bug.

3.10 0.3

• Added a test suite with Travis CI and coveralls integration.

• Introduced support for Django REST Framework 3.0 serialization.

3.11 0.2.1

• Ensuring admin widget-dependent thumbnail images are created even if
VERSATILEIMAGEFIELD_SETTINGS[’create_on_demand’] is set to False

3.12 0.2

• Introduced Django REST Framework support!

• Added ability to turn off on-demand image creation and pre-warm images to improve performance.

3.13 0.1.5

• Squashed CroppedImage bug that was causing black stripes to appear on crops of images with PPOI values
that were to the right and/or bottom of center (greater-than 0.5).

30 Chapter 3. Release Notes

https://travis-ci.org/WGBH/django-versatileimagefield
https://coveralls.io/r/WGBH/django-versatileimagefield

django-versatileimagefield Documentation, Release 0.1.1

3.14 0.1.4

• Overhauled how CroppedImage processes PPOI value when creating cropped images. This new approach
yields significantly more accurate results than using the previously utilized ImageOps.fit function, espe-
cially when dealing with PPOI values located near the edges of an image or aspect ratios that differ significantly
from the original image.

• Improved PPOI validation

• Squashed unset VERSATILEIMAGEFIELD_SETTINGS[’global_placeholder_image’] bug.

• Set crop Sizer default resample to PIL.Image.ANTIALIAS

3.15 0.1.3

• Added support for auto-rotation during pre-processing as dictated by ‘Orientation’ EXIF data, if available.

• Added release notes to docs

3.16 0.1.2

• Removed redundant javascript from ppoi ‘click’ widget (thanks, @skumar!)

3.17 0.1.1

• Converted giant README into Sphinx-friendly RST

• Docs added to readthedocs

3.18 0.1

• Initial open source release

3.14. 0.1.4 31

https://github.com/theskumar

django-versatileimagefield Documentation, Release 0.1.1

32 Chapter 3. Release Notes

CHAPTER 4

Roadmap to v1.0

• Programmatically delete images created by VersatileImageField (including clearing their connected
cache keys)

33

	In A Nutshell
	Table of Contents
	Installation
	Model Integration
	Specifying a Primary Point of Interest (PPOI)
	Using Sizers and Filters
	Writing Custom Sizers and Filters
	Django REST Framework Integration
	Improving Performance

	Release Notes
	0.6.1
	0.6
	0.5.4
	0.5.3
	0.5.2
	0.5.1
	0.5
	0.4
	0.3.1
	0.3
	0.2.1
	0.2
	0.1.5
	0.1.4
	0.1.3
	0.1.2
	0.1.1
	0.1

	Roadmap to v1.0

